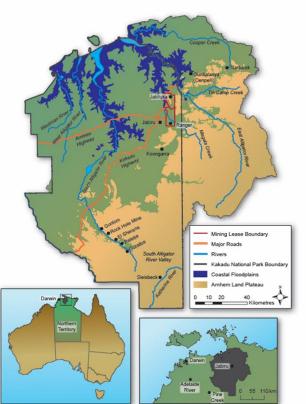


Ranger Uranium Mine

Ranger Environmental Assessment

- Fox Reports

The Nuclear Industry

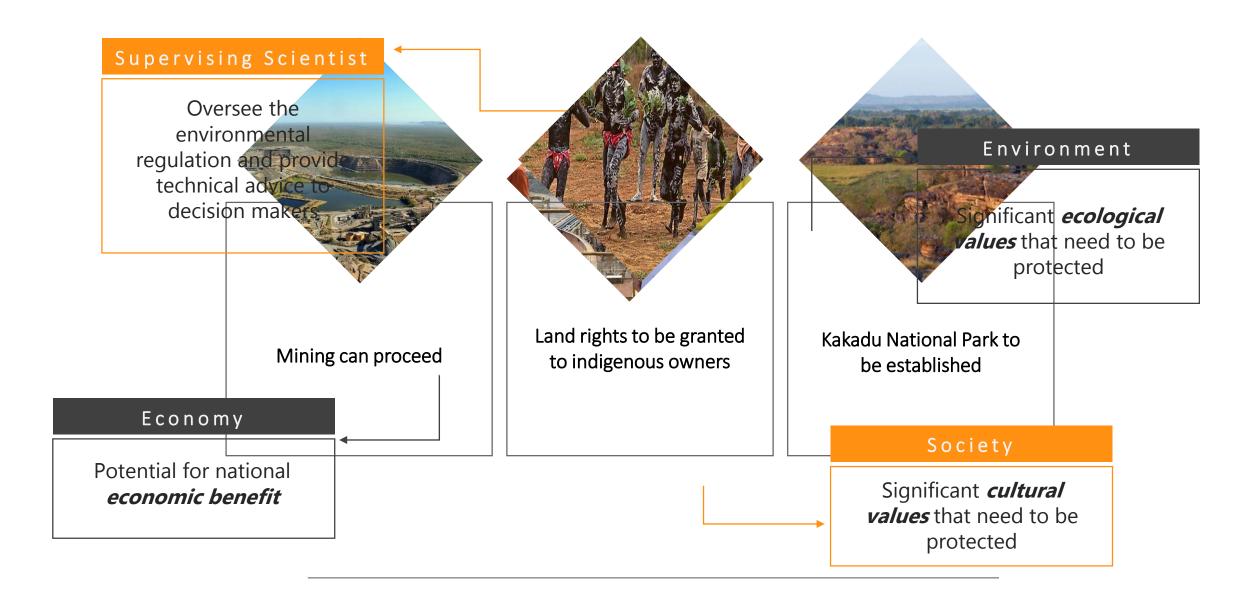

- Economy

The Local Community

- Social

The Unique Environment

- Environment



Fox Recommendations

The Environmental Requirements

Set out stringent *objectives* for environmental protection that align with the high conservation value of the region surrounding the mine.

Operational *objectives*

- No detrimental impacts in the surrounding environment

Rehabilitation objectives

- All tailings must be returned to the mine pits and contaminants from tailings must not impact the surrounding environment for 10,000 years
- A sustainable ecosystem must be restored which is similar to the surrounding environment

Overarching objective – best practicable technology

Environmental Requirements of the Commonwealth of Australia for the Operation of Ranger Uranium Mine

Preamble

The Environmental Requirements for the Ranger uranium mine set out the Commonwealth's environmental protection conditions with which the company must comply. These are conditions of the Authority issued under s41 of the Atomic Energy Act 1953 and also reflect the Commonwealth's role in the Alligator Rivers Region under the Environment Protection (Alligator Rivers Region) Act 1978. The operational procedures and practices, and environmental standards, guidelines, codes, regulations or limits relevant to meeting these conditions are set out in Northern Territory legislation and the Ranger General Authorisation established under the Uranium Mining (Environment Control) Act 1979 (NT).

Arrangements for consultation and approval concerning operations at Ranger are set out in the "Working Arrangements" contained in the Memorandum of Understanding between the Commonwealth and Northern Territory governments, as amended from time to time. These arrangements require the Supervising Authority to consult with and have regard to the views of the Supervising Scientist and the Northern Land Council (NLC) prior to:

40 Years of Research and Monitoring

Pre-mining characterization

Objective: Collect baseline data

Operational monitoring and management

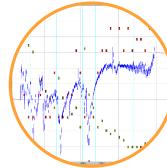
- Objective: Set standards to prevent impacts
- Objective: Undertake independent monitoring to detect impacts

Progressive Rehabilitation

- Objective: Inform rehabilitation and final designs
 - *Objective:* Model calibration and validation

Pre-mining Baseline

- Research facility established in Jabiru
- Physicochemical, hydrological and geomorphological baseline
- Characterising aquatic and terrestrial ecosystems



Operational Monitoring - Impact Prevention

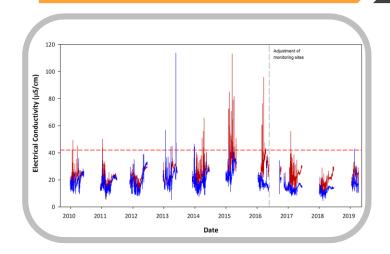
National and international biological effects data

Statutory
Water
Quality
Standards

Reference site data

Site-specific biological effects data

Operational Monitoring - Impact Prevention


Monitoring

Observed deterioration in water quality downstream of the mine site

Mitigation

Interception trench and water extraction bores installed

Investigation

Identified the source – acidic seepage in vicinity of the Tailings Storage Facility

Operational Monitoring – Impact Detection

- Routine fish and macroinvertebrate surveys for species richness and diversity
- In-situ toxicity testing
- Metal and radionuclide accumulation in freshwater mussels and other bush foods
- All data and reports are made public

Progressive Rehabilitation – Optimisation of final designs and processes

- Trial Landform built 2008/2009
- Pit 1 landform current
- Monitoring
 - Erosion characteristics water quality, suspended sediments, bedload, discharge.
 - Revegetation success full suite of vegetation metrics
 - Impact of events/interventions controlled burns
 - Plant available water infiltration, particle size, soil development.

Progressive Rehabilitation – Model Calibration and Validation

Landform Evolution Model

Plant Available Water Model

Conceptual Groundwater Model

Flood Model

Site-based Water Balance Model

Groundwater Flow Model

Reactive Transport Model

Geochemical Models

Site-based Water Balance Model

Groundwater Head Recovery Model

Solute Transport Model

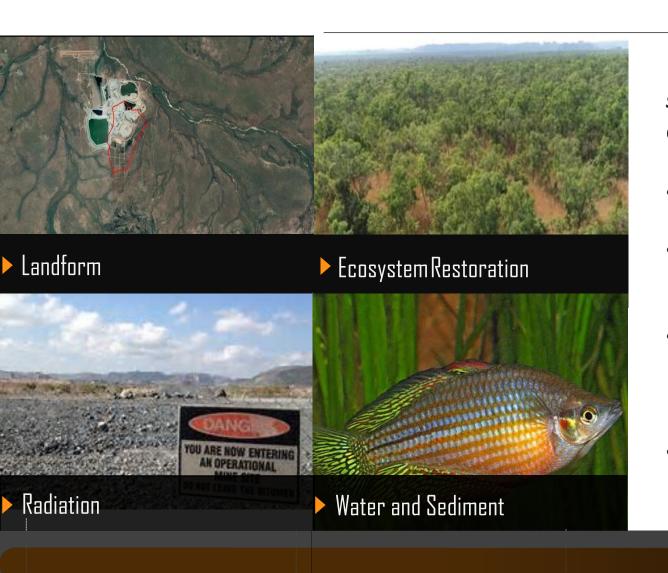
Tailings Consolidation Model

Source term Model

Cumulative Environmental Risk Assessment Model

Radiation Dose Assessment Models

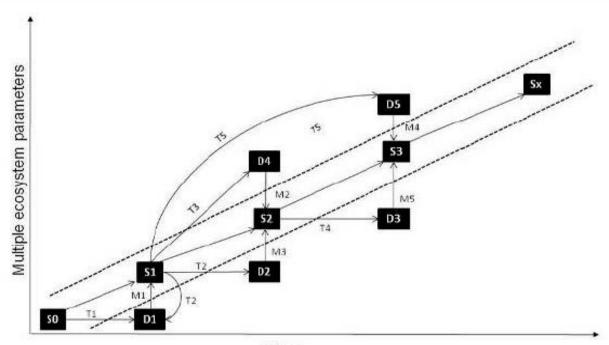
State and Transition Ecosystem Model


Groundwater / Surface Water Interactions

Atmospheric Dispersion Model

Surface Water Contaminant Transport Model

Setting Rehabilitation Standards



End-state is a *sustainable ecosystem* that is *similar* to the surrounding area, and is physically, chemically and radiologically *stable*

- Based upon the Environmental Requirements
- Provide clear targets to inform design and upon which to assess success
- Incorporate 40 years of research undertaken by both the Supervising Scientist and the mine operator
- Will underpin the regulatory assessment and approval of the final closure criteria for Ranger mine

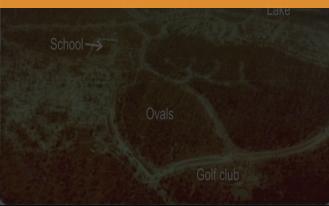
Post-closure Monitoring

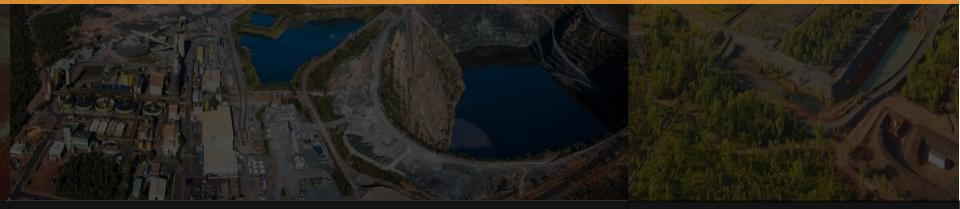
- Ensure the environment remains protected under a changed management regime.
- Making sure we are tracking towards the end-state.
- Monitoring needs to have sufficient spatial and temporal scales to ensure specific targets are being met.
- Involve traditional landowners to build capacity and ensure environmental stewardship

Monitoring for the future

Pre-mining characterization

 Collecting baseline data and information


Operational monitoring and management


- Setting standards for environment protection
- Developing methods for monitoring the effects of mining
- Investigation, management and mitigation

Rehabilitation

- Setting standards for rehabilitation
- Developing methods to assess rehabilitation

Evaluation and Optimisation

Evaluation and Optimisation

Evaluation and Optimisation

Evaluation and Optimisation

40 Years of Research and Monitoring

Environmental Characterisation

Sufficient baseline data and information to *understand the* values being protected

Long-term Monitoring

Assessment of long-term trends to *informing mitigation* activities

Transparent Advice

Public *assurance* and establishing *trust*

Accou

Site-specific Standards

Accounting for the sensitivity of the local environment to ensure the *level* of protection is appropriate

Evidence-based Decisions

Clear *justification for the cost* of management and mitigation activities

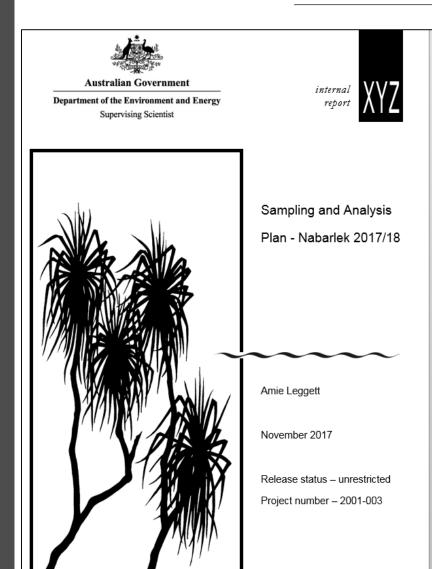
Evaluation and Optimisation

Allowing for innovation in methods and *adaptability* over time

No environmental impact detected for nearly 40 years

Monitoring

Clear objectives are critical!


Documented monitoring plan and data management plan.

Data quality needs to be a key part of monitoring design.

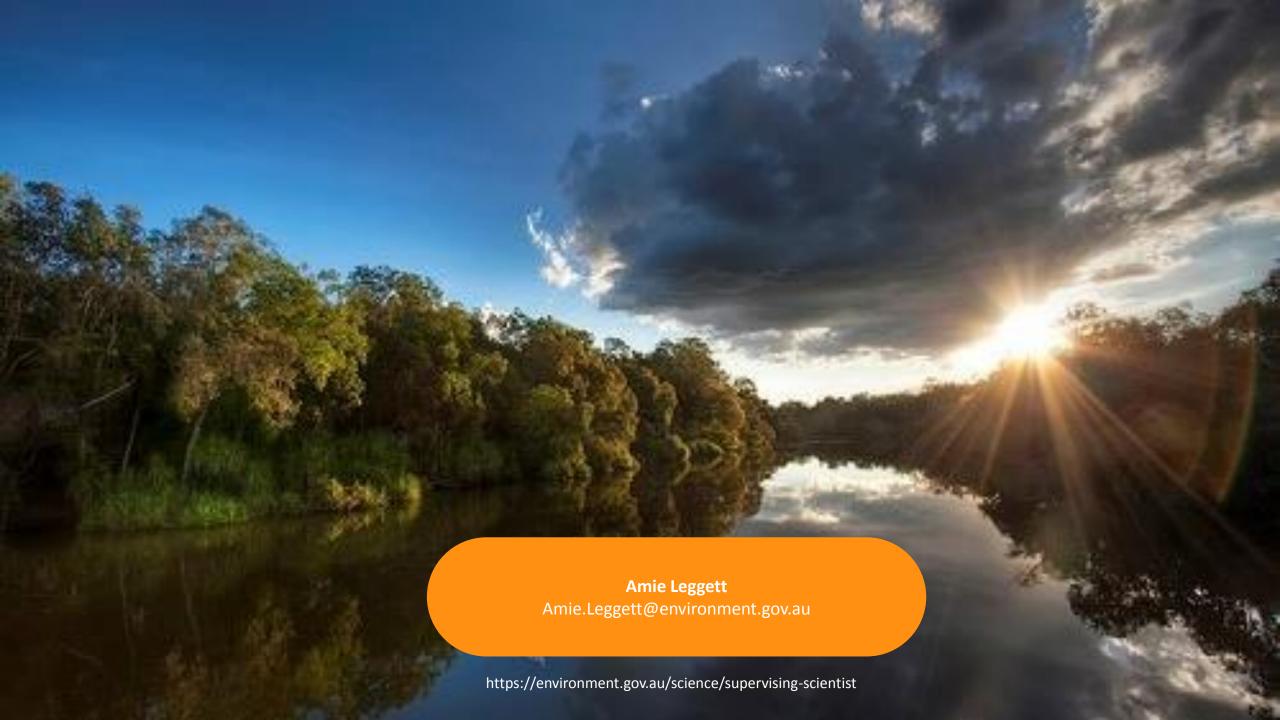
Evaluation and review.

Lessons to Share

Contents

1 Introduction	4
1.1 Purpose and Background	4
1.2 SAP Objectives	4
1.3 Data Quality Objectives	4
Z Previous Investigations	5
2.1 Environmental Setting	5
2.2 Historical Data	5
2.3 Recent Data	5
4 Sampling and Analysis	7
4.1 Sampling Design Rationale	7
4.2 Sample Collection	8
4.2.1 Number of Sites and Samples	8
4.2.2 Methods	9
4.2.3 Analytical parameters'	9
4.2.4 Sample Handling, Preservation, Stroage and Transportation	10
4.2.5 Analytical Laboratory	10
4.2.6 QAQC procedures	10
4.2.7 Data, Reporting and Review	11
Bibliography and References	11

ii


Communication

Research outcomes must be conveyed in a way that people can understand.

Stakeholder interests need to be understood and met.

Opportunity to educate people, and to be educated.

