

Protecting vulnerable land from high wallaby densities

Dr Miguel A Bedoya-Pérez

Prof Michael Lawes Dr Clive McMahon

What is the problem?

Pastoralists see Agile Wallabies as pests

- Agriculture:
 - Direct competition with cattle (for feed and supplements)
 - Destruction of improved pastures (digging)
 - Destruction of hay and horticultural crops
- Environment:
 - Loss of ground cover/fuel load for fire management
 - Erosion from loss of protective ground cover
 - Rapid and efficient spread of weeds

Project Background

- 2009 Katherine Pastoral Industry Advisory Committee (KPIAC)
- 2011, 2012 Northern Territory Cattleman Association (NTCA) meetings
- 2012 May Pastoralists meet with CDU
- 2013 October Funding from MLA for Stage 1

<u>Funding and time limited</u> <u>Stage 1 is a 1 year scoping exercise</u>)

Stage 1 main goals are to:

- 1. Develop a case for research and development during Stage 2
- 2. Establish potential partnerships to develop a wallaby management plan

Protecting vulnerable land from high wallaby densities | Territory NRM Nov 2014 | Slide 3

Project aims

Collate current knowledge

Online search engines, Government Departments and other Institutions

• Get the pastoral community involved

Steering committee formed with stakeholder, May 2014

Quantify production losses

Questionnaires and interviews, ongoing

• How many wallabies?

On site population surveys, ongoing

Identify areas/regions most affected

On site population surveys and questionnaires, ongoing

Causes of high wallaby densities?

On site population surveys and questionnaires, ongoing

Management options?

Modelling (STAR and/or SPADE)

Methods - Collate literature

191Relevant manuscripts34Publications mentioned Agile Wallabies:5Books and Book chapters1PhD Thesis, (Stirrat, S. 2000)2Government Reports (NT and TAS)

26 Peer-review articles

Methods - Landholders questionnaires

143			Properties listed (NT Pastoral Map, Yellow pages, etc.)
86			Obtained contact details (Yellow pages, Interviews, etc)
	6		Declined participation on first approach
	80		Received questionnaire
		5	Declined participation after receiving questionnaire
		31	Answered questionnaire
		44	Awaiting answer

@

~

Methods - Onsite population surveys

5		Properties (Sturt Plateau, VRD, and Douglas Daly)
Each property	6	1 km Agile Wallaby Transects
	12	7 m Scat Transects
3/5 properties	4	Paired Exclusion Plots (50cm x 50cm)
	4	Camera Traps
1/5 properties	2	Paired Exclusion Plots (6m x 6m) (DPIF)

Sample sizes are small funding is limited

Results

Reported densities

Article	Year	State	Region	Environment	Ind/km ²
Bell (1973)	1970's	QLD		Savannah	20
				Burnt Areas	100
Croft (1987)	1983	NT	Adelaide River	Woodland	8
Dressen (1993)	1990's		Kakadu NP	Open Woodland	17
				Monsoon Rainforest	62
Stirrat (1995)	1994		Berry Springs	Open Woodland	27

Field estimated densities

'Distance' Software

Truncation: 150 m; Key function: Hazard-rate; & Series expansion: Hermite polynomial

Region	Property	Ind/km ²	95% Confidence Interva	
Douglas Daly	Maneroo	893	274.14	2911.9
	DDRF	489	247.36	967.94
Mataranka	Cave Creek	204	131.48	316.53
Victoria River District	Scott Creek	498	221.09	1120.57
Sturt Plateau	Banjo	8	2.95	23.01

Protecting vulnerable land from high wallaby densities | Territory NRM Nov 2014 | Slide 7

P Habitats Min \$440.96 per hour N Terget species AR Custom Culling AY os 62 Ind km⁻²

Cost-effective strategy selection tool

Preliminary Results - Modeling

Inputs - Victoria River District

Previously applied to:

Biological 0.34 **Biological** Economic r_{max} P • Pop growth (rm) Funds available Return form culls Carrying capacity (K) 490 Ind km⁻² K_m Initial density Overhead Dispersal capacity Operating costs Initial density 280.4 Ind km⁻² **Economic** SC M 25-95 % reduction A E Park-wide vs. patchy Operating cost ERS Desire density Hunting efficiency 0.15 0 U Benefit

Spatio-Temporal Animal Reduction explicit models - STAR+

Decision framework **not** a predictive model

0.148

Culling

Desired density

Hunting efficiency

10 11 -

Population model Cull cell or not? Initial distribution Damage Budget/density Vexation Optimisation (Spatial/non-spatial) Cost of scenario Animals culled Population size (N) Proportional reduction in cull zone Proportion of K Target achieved? Protecting vulnerable land from high wallaby densities | Territory NRM Nov 2014 | Slide 8

Preliminary Results - Modeling

6 Scenarios tested

Management scenario	Reduction Target	Initial Cull (1 st year)	Maintenance cull (yearly)
(1) Zero density reduction	0%	0%	0%
(2) Low-intensity reduction	25%	17%	9%
(3) Medium-intensity reduction	50%	30%	19%
(4) High-intensity reduction	75%	50%	31%
(5) Very high-intensity reduction	90%	60%	41%
(6) Extreme-intensity reduction	95%	63%	47%

Output

Management scenario	Animals removed	Density remaining (Ind/km ²)	Cost per animal	Cost per km ²	Total mgmt. cost
(1) Zero density reduction	0	175.77	\$0	\$0	\$0
(2) Low-intensity reduction (25%)	55,042	132.81	\$0.38	\$28	\$21,163
(3) Medium-intensity reduction (50%)	82,543	88.50	\$0.62	\$68	\$50,865
(4) High-intensity reduction (75%)	83,714	43.78	\$1.35	\$151	\$112,987
(5) Very high-intensity reduction (90%)	75,681	23.70	\$2.70	\$273	\$204,069
(6)Extreme-intensity reduction (95%)	70,961	17.65	\$4.05	\$384	\$287,531

Preliminary Results - Modeling

Protecting vulnerable land from high wallaby densities | Territory NRM Nov 2014 | Slide 10

Preliminary Results - Questionnaire

How would you rate the impact that agile wallabies have on your production?

Estimates of impacts to pastoral production:

	Native Pastures	Improved Pastures	Hay production
Carrying capacity reduction 6.5% to 13% year ⁻¹	\$6.7 to \$214 km ⁻² year ⁻¹	\$238 to \$500 km ⁻² year ⁻¹	\$857 km ⁻² year ⁻¹
Cost of control			
Shooting	\$0.1 to \$25 km ⁻² y	/ear ⁻¹ (between \$1500 and \$2	20,000 per year)
Fencing \$2100 km ⁻¹ excluding labour, clearing costs and recurrent n		current maintenance	
	Protecting vulnerable	e land from high wallaby densities Territory	y NRM Nov 2014 Slide 11

Conclusions

- Wallaby densities are higher on pastoral land than in natural environments
 - Properties with improved pastures are the most affected
- Grazing pressure by agile wallabies needs to be measured directly
- A management plan for agile wallabies will be expensive
 - Cost-benefit of control methods needs to be assessed
 - Logistics, personnel and priority areas must be taken into account
- Research into alternative methods of control is needed –stakeholder supported

trials will be essential because of limited funding

Acknowledgements

Funding and resources

In-kind support, data and steering committee

Northern Territory Government

DEPARTMENT OF PRIMARY INDUSTRY AND FISHERIES

Volunteers and research assistance

Kaitlyn Andrews Robin Lungeli Magar Alyson Stobo-Wilson